RESEARCH PAPER

Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice

Xiaoxiao Wang1,# Tingting Du1,# Jianliang Huang1, Shaobing Peng1, and Dongliang Xiong1,2,*

1 National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
2 Department of Plant Sciences, University of California, Davis, CA 95616, USA
These authors contributed equally to this work.
* Correspondence: dlxiong@mail.hzau.edu.cn or dlxiong@ucdavis.edu

Received 1 February 2018; Editorial decision 14 May 2018; Accepted 14 May 2018

Editor: Tracy Lawson, University of Essex, UK

Abstract

Understanding the physiological responses of crops to drought is important for ensuring sustained crop productivity under climate change, which is expected to exacerbate the frequency and intensity of periods of drought. Drought responses involve multiple traits, and the correlations between these traits are poorly understood. Using a variety of techniques, we estimated the changes in gas exchange, leaf hydraulic conductance, and leaf turgor in rice (Oryza sativa) in response to both short- and long-term soil drought. We performed a photosynthetic limitation analysis to quantify the contributions of each limiting factor to the resultant overall decrease in photosynthesis during drought. Biomass, leaf area, and leaf width significantly decreased during the 2-week drought treatment, but leaf mass per area and leaf vein density increased. Light-saturated photosynthetic rate declined dramatically during soil drought, mainly due to the decrease in stomatal conductance (g_s) and mesophyll conductance (g_m). Stomatal modeling suggested that the decline in leaf hydraulic conductance explained most of the decrease in stomatal closure during the drought treatment, and may also trigger the drought-related decrease of stomatal conductance and mesophyll conductance. The results of this study provide insight into the regulation of carbon assimilation under drought conditions.

Keywords: Drought, leaf hydraulic conductance, mesophyll conductance, photosynthesis limitation, rice, stomatal conductance, vulnerability.

Introduction

Plant productivity is significantly impacted by drought events, which are expected to occur more intensely and frequently as global climate change continues (Trenberth et al., 2013). To develop new approaches to improve crop production under future conditions of water limitation, the responses of several physiological processes, including photosynthesis, plant hydraulic conductivity, and cell turgor pressure, have been widely documented (Flexas et al., 2002; Grassi & Magnani, 2005; Flexas et al., 2009; Galle et al., 2011; Cano et al., 2013; Galmés et al., 2013; Rodriguez-Dominguez et al., 2016; Gleason et al., 2017; Martínez-Vilalta & Garcia-Forner, 2017); however, the correlations among these physiological traits have not been fully evaluated under drought conditions.

In C3 plants, the light-saturated leaf photosynthetic rate (A) is limited by stomatal conductance (g_s), mesophyll conductance to CO$_2$ (g_m), and/or the photosynthetic biochemistry related to either carboxylation velocity, V_{cmax}, or the maximum electron transport rate set by photochemical and Calvin cycle activities, J_{max} (Tosens et al., 2012; Tomás et al., 2013; Tosens et al., 2016; Verboom-Jürgenson et al., 2017). Grassi and Magnani (2005)
developed a method to estimate the partial contribution of each limiting factor to the overall reduction of photosynthesis; this approach has since been applied to many species under a variety of environmental stresses (Flexas et al., 2009; Galle et al., 2009; Galle et al., 2011; Galmés et al., 2013; Wang et al., 2018). Although the limiting effects of \(g_s \), \(g_m \), and photosynthetic biochemistry on \(A \) are dependent on the species, \(A \) has been suggested to be first inhibited by a decrease in \(g_s \) and \(g_m \) under drought conditions, with the biochemical inhibition occurring later, under more severe drought stress conditions (Grassi & Magnani, 2005; Flexas et al., 2009; Galle et al., 2009; Galle et al., 2011; Galmés et al., 2013; Galmés et al., 2017). However, the contribution of each limiting factor to \(A \) under drought conditions, especially dynamic drought conditions, is unknown for rice (Oryza sativa), despite its status as one of the most important cereal crops in the world.

When plants are exposed to drought, their stomata close, preventing a decline in leaf water potential (\(\psi_{lwd} \)) and thereby ensuring that the water demand in leaves does not exceed the safe threshold of the hydraulic system (Scoffoni et al., 2017b); however, the mechanisms underlying stomatal closure in response to soil drought are poorly understood. Both hormonal (Dodd, 2005) and leaf turgor (Sperry et al., 2002; Buckley, 2005; Brodidribb & Cochrard, 2009; Rodriguez-Domínguez et al., 2016) signals have been proposed to explain stomatal closure in angiosperms during drought conditions. The hormonal hypothesis suggests that stomatal closure in the leaves is principally driven by hormonal signals, especially abscisic acid (ABA) produced de novo in the leaf (Holbrook et al., 2002; McAdam et al., 2016; Zhang et al., 2018). The leaf turgor hypothesis proposes that the decline in \(g_s \) during soil drought is caused by change in leaf turgor. Recently, a serial study (McAdam & Brodidribb, 2016; McAdam et al., 2016) tried to link these two hypotheses by demonstrating that, in response to low relative humidity, ABA is rapidly synthesized de novo and accumulates in the leaf once the leaf turgor declines in angiosperms. By contrast, a recent theoretical analysis suggested that ABA accumulation in dehydrated leaves is associated with a decline in cell volume, rather than a loss of turgor pressure (Sack et al., 2018).

A decrease in \(g_m \) in response to soil drought was also observed in many previous studies, although the mechanisms for this decrease are unclear (Flexas et al., 2002; Grassi & Magnani, 2005; Warren, 2008; Galle et al., 2009; Cano et al., 2013; Théroux-Rancourt et al., 2014). Many studies have demonstrated the parallel responses of \(g_s \) and \(g_m \) to environmental changes (see review in Flexas et al., 2012). The physiological basis of this relationship is largely unknown; however, recent studies in plant hydraulics suggest that leaf hydraulic conductance (\(K_{lym} \)) mediates the covariation of \(g_s \) and \(g_m \) (Flexas et al., 2013; Xiong et al., 2015b; Xiong et al., 2017; Xiong et al., 2018). The liquid water transport pathways in the mesophyll are partially shared with the CO₂ diffusion pathways; hence, a functional linkage between \(g_m \) and \(K_{lmd} \) has been suggested. Similarly, \(g_s \) and \(K_{lmd} \) may be coupled because of the common stomatal pathway for the exchange of water and CO₂ between the leaf and the atmosphere. Correlations between \(K_{lmd} \) and \(g_s \) or \(g_m \) have been observed in many species and genotypes (Brodidribb et al., 2005; Brodidribb et al., 2007; Flexas et al., 2013; Théroux-Rancourt et al., 2015; Xiong et al., 2018). Nonetheless, it is unclear whether a coordinated regulation of \(g_s \), \(g_m \), and \(K_{lmd} \) occurs under varied environmental conditions, for instance, during water stress. Indeed, \(K_{lmd} \) declines rapidly between full turgor and the turgor loss point and even more strongly during extreme dehydration (reviewed in Scoffoni et al., 2017b). The response of \(K_{lmd} \) to dehydration has been suggested to arise mainly due to the vulnerability of tissues outside the xylem, such as mesophyll (Scoffoni et al., 2017a), the major tissue where water transport and CO₂ diffusion may share a common pathway (Xiong et al., 2017). Théroux-Rancourt et al. (2014) observed that \(K_{lmd} \) and \(g_s \) decreased as the soil water potential declined, but that \(g_m \) decreased only after \(g_s \) was <0.15 mol m⁻² s⁻¹ in poplars (Populus sp.). Revealing the regulatory patterns of these traits in response to drought is necessary for enhancing our understanding of plant responses to water limitation (Scoffoni et al., 2017b).

In this study, we estimated gas exchange, \(K_{lmd} \), and leaf turgor in response to both short- and long-term soil drought in two rice genotypes to reveal the correlations between and sequences of changes in these traits during the response to drought stress. The objectives of this study were (i) to reveal the dynamic limiting effects of \(g_s \), \(g_m \), and the photosynthetic biochemistry on \(A \) during drought in rice; and (ii) to clarify the vulnerabilities of \(A \), \(g_s \), \(g_m \), and \(K_{lmd} \) and their relationships under drought conditions.

Materials and methods

Plant materials and growth conditions

Two ‘Super’ hybrid rice cultivars, Yangliangyou 6 (YLY6) and Chaoyou 1000 (CY1000), were used in this study. YLY6 was a widely used reference cultivar in promotion trials of newly developed ‘Super’ varieties in China, while CY1000 is a recently developed ‘Super’ variety with high yield and wide adaptation characteristics. Seeds were germinated and grown in a nursery for 2 weeks, and the seedlings were then transplanted into 11 litre plastic pots containing 10 kg of soil, at a density of three plants per pot. Before transplantation, 7.0 g of compound fertilizer (N₅P₅O₅·K₂O=16:16:16; Batian Ecological Engineering Limited, Shenzhen, China) was mixed into the soil of each pot. For each genotype, 60 randomly arranged pots of seedlings were grown, and pots were watered daily before the drought experiment began. Seven weeks after transplantation, 10 pots of each genotype were subjected to long-term water deficiency stress by maintaining a relative soil water content of ~75% for 2 weeks (Fig. 1A).

Gas exchange and chlorophyll fluorescence measurements

To avoid the effects of fluctuations in outdoor air temperatures, light intensity, and humidity (see Supplementary Fig. S1 at JXB online) on gas exchange, each measurement was taken between 09.00 h and 16.00 h in an environmentally controlled growth chamber (Model GR48; Conviron, Controlled Environments Limited, Winnipeg, MB, Canada), with an air temperature of 25 °C, a relative air humidity of 70%, and a photosynthetic photon flux density (PPFD) of 600 μmol m⁻² s⁻¹. The night before the gas exchange measurements, the second fully expanded leaf of each plant was covered with both a plastic sheet and aluminum foil to estimate the stem water potential (\(\psi_{swm} \)) of the plant. After acclimatizing the plants overnight in the growth chamber, gas exchange measurements were carried out on the uppermost newly and fully expanded leaves, using a LI-6400 portable photosynthesis system equipped with a LI-6400–40 chamber (LI-COR Inc., Lincoln, NE, USA). In the leaf
chamber, the PPFD was maintained at 1500 μmol m\(^{-2}\) s\(^{-1}\), the leaf-to-air vapor pressure deficit (VPD) was 1.5–2.0 kPa, and the CO₂ concentration was adjusted to 400 μmol mol\(^{-1}\) using a CO₂ mixer. The block temperature during the measurements was set to 25 °C. After stabilization to a steady state, the gas exchange parameters, steady-state fluorescence \(F_s\), and maximum fluorescence \(F_m\) were recorded. The actual photochemical efficiency of photosystem II \(\Phi_{PSII}\) was calculated as follows:

\[
\Phi_{PSII} = \frac{F_m - F_s}{F_m} \tag{1}
\]

The electron transport rates \(J_f\) were computed as follows:

\[
J_f = \Phi_{PSII} \cdot \text{PPFD} \cdot \alpha \cdot \beta \tag{2}
\]

where \(\alpha\) is the leaf absorbance and \(\beta\) represents the distribution of electrons between photosystem I and photosystem II. After the gas exchange measurement, both \(\psi_{stem}\) and the leaf water potential \(\psi_{leaf}\) were determined using a pressure chamber (PMS Instrument Company, Albany, OR, USA) after equilibrating for at least 30 min.

To estimate \(\alpha\) and \(\beta\), light response curves for both well-watered and water-stressed plants were measured. The gas exchange system was switched to a low O\(_2\) concentration (<2%) by injecting pure N\(_2\), and simultaneous measurements of the light response curves and chlorophyll fluorescence were performed. During the measurements, the chamber conditions were the same as those described above, except that a gradient of PPFD values was used: 2000, 1500, 1200, 1000, 800, 600, 400, 200, 100, and 0 μmol m\(^{-2}\) s\(^{-1}\). After reaching a steady state, the parameters of gas exchange and chlorophyll fluorescence were simultaneously recorded. The slope of the relationship between \(\Phi_{PSII}\) and \(4\Phi_{CO2}\) (the quantum efficiency of CO₂ uptake) was considered to represent the value of \(\alpha \cdot \beta\) (Valentini et al., 1995). As there were no differences in the \(\alpha \cdot \beta\) values between the control and water-stressed leaves, the average value for all genotypes was used.

The mesophyll conductance of CO₂ \(g_m\) was calculated based on the variable \(J\) method described by Harley et al. (1992), as follows:

\[
g_m = A / \left(\frac{C_i - \Gamma^* (J_f + 8 (A + R_d))}{J_f - 4 (A + R_d)} \right) \tag{3}
\]

where \(\Gamma^*\) represents the CO₂ compensation point in the absence of respiration, \(R_d\) is the day respiration rate, which was assumed to be half of the dark respiration rate \(R_{dark}\), \(C_i\) represents the intercellular CO₂ concentration, which was determined from an estimation of the cuticular conductance (see below) in this study, and \(C_c\) is the CO₂ concentration in the chloroplast. \(\Gamma^*\) is related to the Rubisco specific factor \((S_{CO2})\), which is relatively conserved at a given temperature. In the present study, the rice \(S_{CO2}\) at 25 °C was obtained from Hermida-Carrera et al. (2016).

Cuticular conductance and \(C_i\) calibration

The method of Sack and Scoffoni (2011) was used to estimate the minimum leaf conductance \(g_{cut}\). The leaves were scanned using a Canon EOS M50 (Canon Inc., Tokyo, Japan) to calculate their area, and then dried in a room with an air temperature of 25.0 °C and a light intensity of <5 μmol m\(^{-2}\) s\(^{-1}\). Leaves were weighed every 10 min over ~300 min using a digital balance (Sartorius BP 2215, Gottingen, Germany). The cuticular transpiration rate was determined from the regression of the change in leaf mass over time. Temperature and humidity sensors (HOB; H21-002; Onset Computer Corporation, Bourne, MA, USA) were placed next to the samples, and the air temperature and relative humidity were recorded.

Fig. 1. (A) Soil relative water content of the well-watered (WW) and water-deficient (WD) treatments. (B) Predawn leaf water potential \(\psi_{predawn}\) and leaf osmotic potential \(\psi_{osmotic}\) of two rice genotypes after a 2-week drought treatment. See Supplementary Table S1 for definitions of the parameters. (C) Responses of leaf traits to 2 weeks of drought. The response was calculated as \(\ln(X_{WD}/X_{WW})\), where \(X_{WD}\) and \(X_{WW}\) were mean values of trait \(X\) under the WD and WW treatments, respectively. (This figure is available in colour at JXB online.)
at the beginning of each weighing cycle to determine the VPD. The value of ψ_{cut} was calculated as the transpiration rate divided by the VPD.

It is a widely accepted norm that water vapor diffusing through stomata can be used to calculate the C_t, however, the calculations assume an identical gas phase for CO$_2$ and water vapor, which does not hold under drought conditions. As stomata close, the cuticle becomes the dominant path of water vapor diffusion (Boyer et al., 1997; Boyer, 2015c; Hanson et al., 2016). Indeed, it has been suggested that C_t could potentially be overestimated, as the cuticular conductance is far greater for water than for CO$_2$ (Boyer, 2015).

Three methods were used to estimate Hydraulic vulnerability (ψ_{leaf} and final leaf water potential (ψ_f) was recorded, along with the leaf temperature. Next, the leaf area (LA) was measured in a similar manner to the EFM method described above, except that the leaves were covered with moist paper and were not exposed to light, in order to prevent transpiration during the I measurement. I was calculated by fitting an exponential curve through the first 10 s of the flow data and extrapolating back to the initial point of leaf excision. $K_{leaf-EMF}$ was calculated as follows:

$$K_{leaf-EMF} = \frac{E}{LA \cdot (i - \psi_{final})}$$ (7)

The RKM was calculated following the method outlined by Blackman and Brodribb (2011). The ψ_i, leaf temperature, initial maximum transpiration of water into leaves (I), and LA were measured in a similar manner to the EFM method described above, except that the leaves were covered with moist paper and were not exposed to light, in order to prevent transpiration during the I measurement. I was calculated by fitting an exponential curve through the first 10 s of the flow data and extrapolating back to the initial point of leaf excision. $K_{leaf-RKM}$ was calculated as follows:

$$K_{leaf-RKM} = \frac{I}{LA \cdot \psi_i}$$ (8)

We also measured K_{leaf} using the transpiration rate (T_e) values from the gas exchange measurement and ψ_{stem} and ψ_{leaf} after the gas exchange. For this method, $K_{leaf-facce}$ was calculated as follows:

$$K_{leaf-facce} = \frac{T_e}{\psi_{stem} - \psi_{leaf}}$$ (9)

To construct the vulnerability curve, K_{leaf} was plotted against the lowest ψ_{leaf} (i.e. ψ_i in RKM; ψ_0 or ψ_{final} in EFM, and ψ_{leaf} in the gas exchange method). Because the viscosity of water is temperature dependent, the K_{leaf} values in this study were standardized to their corresponding value at 25 °C (Scoffoni et al., 2012).

Pressure-volume curves

Four pressure–volume curves per genotype were conducted with well-watered plants, to estimate their osmotic potential at full turgor (ψ_t) and at the turgor loss point (ψ_{lp}), as well as their modulus of elasticity (ϵ) (Sack et al., 2003; Scoffoni et al., 2011). Leaves were sampled from well-watered plants and rehydrated overnight before desiccation. Briefly, the leaf weight and ψ_{leaf} were measured at least 10 times over the desiccation period until ψ_{leaf} dropped to \sim3.0 MPa. Finally, the leaves were dried at 70 °C for 2 days and their dry mass was measured.

Osmotic potential measurements

The fully expanded young leaves of well-watered and water-stressed plants were sampled in the morning. The leaf samples were immersed in liquid nitrogen and then stored at −80 °C. The osmotic potentials of these leaves were measured using a vapor pressure osmometer (VAPRO 5520; Wescor Inc., Logan, UT, USA).

Leaf vein density

The newly developed and fully expanded leaves of both well-watered and water-stressed plants were chemically cleared in 15% NaOH (w/v) and then bleached following the standard protocol for rice (Xiong et al., 2015b; Xiong et al., 2017). The cleared leaves were stained with safranin and fast green in ethanol. After being rinsed in water, the leaves were scanned using a Canon EOS M50 (Canon Inc., Tokyo, Japan) to enable quantification of their area and major vein lengths. To measure the minor veins, a light microscope (U-TV0.5XC; Olympus, Tokyo, Japan) with a 5x objective was used to observe the leaves, and photographs were taken of the top, middle, and bottom of each leaf. LA and vein length were manually measured using ImageJ (Wayne Rasband/NIH, Bethesda, MD, USA). The total vein density (VLA), major vein density (VLAm), and minor vein density (VLAαm) were estimated.

Biomass and leaf area

Four plants per treatment were sampled after 2 weeks of drought treatment and were separated into stems and leaves. The LA was measured using a LA meter (LI-3100; LI-COR Inc., Lincoln, NE, USA). The samples were dried to a constant weight at 80 °C and their biomass was recorded.

Photosynthetic limitation analysis

A limitation analysis is a helpful tool for quantifying the effects of stress on various factors affecting A (Grassi & Magnani, 2005; Buckley & Diaz-Espejo, 2015). The relative photosynthetic limitations, including the relative stomatal (l_s), mesophyll (l_m), and biochemical (l_b) limiting effects, were modeled as previously described by Grassi and Magnani (2005):

$$l_s = \frac{g_s/g_{\infty} \cdot \partial A/\partial C_s}{g_s + \partial A/\partial C_s}$$ (10)

$$l_m = \frac{g_s/g_{\infty} \cdot \partial A/\partial C_m}{g_s + \partial A/\partial C_m}$$ (11)

$$l_b = \frac{g_s}{g_s + \partial A/\partial C_s}$$ (12)
where g_r is the total conductance, which is calculated as:

$$g_r = \frac{1}{\frac{1}{g_{iw}} + \frac{1}{g_m}} \tag{13}$$

To assess the impact of ψ_{leaf} change on photosynthesis, the limiting effects were linked to overall changes in A:

$$\frac{dA}{A} = LS + LM + LB = \frac{dg_r}{g_{iw}} k + \frac{dg_{iw}}{g_m} l_m + \frac{dJ_f}{J_f} b$$

where LS, LM, and LB are the reduction fractional limitations in A caused by a reduction in stomatal conductance, mesophyll conductance, and biochemistry, respectively. In the current study, the fitted photosynthetic parameters at $\psi_{leaf} = -0.3$ MPa were used as reference values. Thus,

$$\frac{dx}{x} = \frac{x_{0.3} - x}{x_{0.3}} \tag{15}$$

where x represents the fitted g_r, g_{iw}, or J_f (see Supplementary Table S1 for definitions of these and other mathematical parameters used in this paper), and $x_{0.3}$ represents the x value at $\psi_{leaf} = -0.3$ MPa.

Quantification of the contributions of hydraulic and hormonal signals to stomatal closure

The g_r model, originally presented by Buckley et al. (2003) and subsequently modified by Rodriguez-Dominguez et al. (2016), was used to examine the contributions of hydraulic and hormonal signals to the decline in g_r under drought. In this model, g_r is expressed as:

$$g_r = \frac{n a K_{leaf}(\psi_{stem} + \pi)}{K_{leaf} + n a \Delta \psi} \tag{16}$$

where π is bulk leaf osmotic pressure, $\Delta \psi$ is the leaf-to-air water vapor mole fraction gradient, n represents the effect of hormonal signals on the sensitivity of guard cell osmotic pressure to leaf turgor, and a represents the relative adenosine triphosphate concentration. In this study, K_{leaf}, ψ_{stem}, $\Delta \psi$, and n were measured, a was simulated, and n was fitted. The π value was measured using a WP4C water potential meter (Decagon, Pullman, WA, USA).

Statistical analysis

Regressions were fitted with a linear model, and regression lines are shown when $P<0.05$. The correlations between the leaf functional traits (K_{leaf}, A, g_r, g_{iw}, and J_f) and ψ_{leaf} were tested by four functions described in a previous study (Scoffoni et al., 2012): a linear function ($K_{leaf} = a \psi_{leaf} + b$), a sigmoidal function ($K_{leaf} = \frac{a}{1 + e^{-\psi_{leaf} - x_{0.3}}}$), a logistic function ($K_{leaf} = \frac{a}{1 + e^{-\psi_{leaf} - x_{0.3}}}$), and an exponential function ($K_{leaf} = y_0 + a \cdot e^{-\psi_{leaf} - x_{0.3}}$). The functions were compared using the Akaike Information Criterion (AIC) corrected for low n. The function with the lowest AIC value was chosen as the maximum likelihood function. The differences of K_{leaf} vulnerability among genotypes and methods were compared using a two-sample Kolmogorov–Smirnov test. All of the analyses were performed in the program R (R Core Team, 2018).

Results

Effects of 2 weeks of water stress on plant performance

The 2-week drought treatment led to a significant reduction in rice biomass (by 17.5% in CY1000 and 20.9% in YLY6; Fig. 1). Drought stress significantly increased LMA (by 13.8% in CY1000 and 15.5% in YLY6) and VLA (by 25.1% in CY1000 and 5.7% in YLY6), but decreased LA (by 14.1% in CY1000 and 15.0% in YLY6) and leaf width (LW) (by 10.8% in CY1000 and 9.3% in YLY6). VLA$_{mean}$ increased by 11.3% in CY1000 under water stress, but no changes were observed in YLY6; more pronounced increases in VLA$_{minor}$ were observed for both genotypes (28.4% increase in CY1000 and 6.8% in YLY6).

Drought stress significantly decreased the gas exchange and leaf hydraulic traits in both rice genotypes, with more pronounced effects in YLY6 than CY1000 (Fig. 1). Overall, water stress decreased A, g_r, g_{iw}, and K_{leaf} by 28.4%, 43.0%, 19.6%, and 50.2%, respectively. The leaf osmotic potential ($\psi_{osmotic}$)

Table 1. Pressure–volume, gas exchange, and leaf hydraulic vulnerability parameters of rice

<table>
<thead>
<tr>
<th>Trait</th>
<th>CY1000</th>
<th>YLY6</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWC (g g$^{-1}$)</td>
<td>2.31 ± 0.05</td>
<td>2.22 ± 0.06</td>
<td>2.27</td>
</tr>
<tr>
<td>n_0 (MPa)</td>
<td>-0.67 ± 0.14</td>
<td>-0.83 ± 0.11</td>
<td>-0.75</td>
</tr>
<tr>
<td>n_{tp} (MPa)</td>
<td>-1.13 ± 0.12</td>
<td>-1.19 ± 0.06</td>
<td>-1.16</td>
</tr>
<tr>
<td>ε (MPa)</td>
<td>8.41 ± 2.10</td>
<td>6.96 ± 0.79</td>
<td>7.69</td>
</tr>
<tr>
<td>$K_{max-PAR}$ (mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$)</td>
<td>8.02</td>
<td>9.25</td>
<td>8.47</td>
</tr>
<tr>
<td>$K_{max-ETR}$ (mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$)</td>
<td>12.2</td>
<td>11.73</td>
<td>11.9</td>
</tr>
<tr>
<td>$K_{max-CO2}$ (mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$)</td>
<td>15.4</td>
<td>15.47</td>
<td>15.5</td>
</tr>
<tr>
<td>A_{max} (µmol CO$_2$ m$^{-2}$ s$^{-1}$)</td>
<td>18.6</td>
<td>20.23</td>
<td>19.3</td>
</tr>
<tr>
<td>g_{min} (mol H$_2$O m$^{-2}$ s$^{-1}$)</td>
<td>0.29</td>
<td>0.33</td>
<td>0.31</td>
</tr>
<tr>
<td>g_{max} (mol CO$_2$ m$^{-2}$ s$^{-1}$)</td>
<td>0.13</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>$P_{max-PAR}$ (MPa)</td>
<td>-0.82</td>
<td>-0.85</td>
<td>-0.84</td>
</tr>
<tr>
<td>$P_{max-ETR}$ (MPa)</td>
<td>-0.91</td>
<td>-0.92</td>
<td>-0.97</td>
</tr>
<tr>
<td>$P_{max-CO2}$ (MPa)</td>
<td>-0.64</td>
<td>-0.64</td>
<td>-0.64</td>
</tr>
<tr>
<td>$P_{0.5}$ (MPa)</td>
<td>-0.93</td>
<td>-1.01</td>
<td>-0.99</td>
</tr>
<tr>
<td>$P_{0.5}$ (MPa)</td>
<td>-0.91</td>
<td>-0.94</td>
<td>-0.93</td>
</tr>
<tr>
<td>$P_{0.5}$ (MPa)</td>
<td>-0.99</td>
<td>-1.05</td>
<td>-1.03</td>
</tr>
<tr>
<td>$P_{0.5}$ (MPa)</td>
<td>-1.99</td>
<td>-1.98</td>
<td>-1.99</td>
</tr>
</tbody>
</table>

See Supplementary Table S1 for definitions of the parameters.
increased by 30.2% in CY1000 and 21.0% in YLY6 following the 2-week drought treatment. In addition, water stress decreased \(g_{\text{cut}} \) in CY1000, but not in YLY6 (Fig. 1).

Leaf hydraulic and photosynthetic dynamics during short-term drought

The gas exchange and leaf hydraulic traits of rice were sensitive to short-term drought (Table 1; Figs 2 and 3). \(A, g_s, \) and \(g_m \) declined exponentially with decreasing \(\psi_{\text{leaf}} \), with very similar patterns observed for the two genotypes (Fig. 2). Overall, the maximum \(A, g_s, \) and \(g_m \) values were 19.30 µmol CO\(_2\) m\(^{-2}\) s\(^{-1}\), 0.31 mol H\(_2\)O m\(^{-2}\) s\(^{-1}\), and 0.14 mol CO\(_2\) m\(^{-2}\) s\(^{-1}\), respectively, with slightly higher values in YLY6 than CY1000. To quantify the sensitivity of the gas exchange traits to leaf drying, we estimated the leaf water potential values at 50% and 80% loss of function (\(P_{50} \) and \(P_{80} \), respectively; Table 1; Fig. 2). The \(P_{50} \) values for \(A, g_s, \) and \(g_m \) were –0.99 MPa, –0.93 MPa, and

![Fig. 2. Response of the gas exchange parameters to decreasing (A–D) leaf water potentials (\(\psi_{\text{leaf}} \)) and (E–H) stem water potentials (\(\psi_{\text{stem}} \)). The vertical solid and dotted lines indicate the water potential at 50% and 80% loss of function, respectively. The triangle represents the turgor loss point (Table 1). Fitted lines are the best-fit functions selected using maximum likelihood. (This figure is available in colour at JXB online.)](https://academic.oup.com/jxb/article-abstract/69/16/4033/4999155)
Coupling of gas exchange and hydraulics

K_{leaf} vulnerability curves were determined using three independent methods (Fig. 3). Although the curves of the two genotypes were indistinguishable when estimated with the same method (Supplementary Table S2), the curves estimated using the three methods were different (Supplementary Table S3). The maximum \(K_{leaf} \) from the gas exchange based EFM method was 15.5 mmol m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\), almost twice as high as the 8.5 mmol m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\) estimated in the RKM method (Table 1). The \(P_{50} \) values of \(K_{leaf} \) were \(-0.84 \text{ MPa} \), \(-0.87 \text{ MPa} \), and \(-0.64 \text{ MPa} \) for the RKM, EFM, and gas exchange based EFM methods, respectively. Moreover, the pressure–volume traits were similar in the two rice genotypes (Table 1), with average values for \(\pi_0 \), \(\pi_{tlp} \), and \(\varepsilon \) of \(-0.75 \text{ MPa} \), \(-1.16 \text{ MPa} \), and \(7.69 \text{ MPa} \), respectively.

Photosynthetic limitation analysis

Both \(g_s \) (\(r^2=0.78; P<0.001 \)) and \(g_m \) (\(r^2=0.69; P<0.001 \)) were tightly correlated with \(A \) during the drought treatment (Fig. 4A, B). Close correlations were also observed between \(K_{leaf} \) and \(g_s \) (\(r^2=0.39; P<0.001 \)), and between \(K_{leaf} \) and \(g_m \) (\(r^2=0.31; P<0.001 \)).

We fitted the stomatal model to our data and then partitioned the observed declines in \(g_s \) into contributions from each variable in the model (Fig. 6). The turgor-independent parameter, \(n \), declined dramatically with leaf dehydration, with a 4-fold decrease as the leaf water potential decreased from 0 to \(-1.5 \text{ MPa} \) during soil drought. The \(a \) parameter was quite stable during leaf dehydration; however, the leaf osmotic pressure, \(\pi \), increased exponentially under drought.

Discussion

In the present study, \(A \) declined under water stress, which resulted in a significant decrease in biomass accumulation. Photosynthesis in C3 plants such as rice is limited by \(g_s \), \(g_m \), and/or the biochemistry of photosynthesis itself, including the enzymes and metabolites involved in the process as well as components of the thylakoid electron transport chain (Flexas, 2016). Our analysis showed that the total relative limitation of photosynthesis by \(g_s \) and \(g_m \) was greater than 80% in rice when the \(\psi_{leaf} \) dropped to \(-1.0 \text{ MPa} \) following soil drying (Fig. 5A). The results of the present study, as well as those of previous studies (Flexas et al., 2002; Galle et al., 2011; Galmés et al., 2013), highlight a major role for CO2 diffusion in limiting \(A \) under conditions of water stress.

The decrease in \(g_s \) can be largely explained by \(K_{leaf} \) vulnerability under drought

We found that the \(g_s \) of rice declined with decreases in the stem (\(\psi_{stem} \)) and leaf (\(\psi_{leaf} \)) water potentials under drought...
conditions (Fig. 2). This decrease in g_s during soil drought has been widely studied, although the mechanisms for this response remain unclear. Two major mechanisms that regulate stomatal closure under drought conditions have been suggested to involve hydraulic (Sperry et al., 2002; Buckley, 2005; Brodribb & Cochard, 2009; Rodriguez-Dominguez et al., 2016) or hormonal (Dodd, 2005; McAdam et al., 2016) processes. Although hormonal signals were not measured in the present study, we quantified the responses to the hormonal and hydraulic signals of drought by modeling them (Fig. 6). Consistent with the findings of Rodriguez-Dominguez et al. (2016), we demonstrated that stomatal closure during drought can be largely explained by hydraulic signals, although hormonal signals also play a role in decreasing g_s. Nevertheless, a recent study suggested that the drought-induced decline in K_{leaf} in isohydric grapevine ($Vitis vinifera$) genotypes is regulated by ABA accumulation (Coupe1-Ledru et al., 2017); thus, ABA could directly or indirectly regulate stomatal closure by decreasing K_{leaf}. Future studies are required to clarify the direct and indirect impacts of ABA on stomatal closure under soil drought conditions.

The mechanisms of K_{leaf} decline during dehydration are still largely unknown. K_{leaf} consists of at least two components, the conductance within the xylem (K_x) and the conductance through tissues outside the xylem (K_{ox}); therefore, the decline of K_{leaf} during dehydration could potentially be caused by changes in either or both of these factors. Increases in xylem tension during dehydration can cause air bubbles to form in the xylem conduit pit (Brodribb et al., 2016a; Brodribb et al., 2016b; Skelton et al., 2017), which decrease K_x. When the tension in the xylem conduits exceeds the biomechanical resistance of the cell wall, the conduits collapse (Cochard et al., 2004; Brodribb & Holbrook, 2005; Bouche et al., 2016). K_x vulnerability cannot always fully explain the observed decline in K_{leaf}; for instance, K_{leaf} can decline early, at high ψ_{leaf}, before an embolism has been observed (Brodribb & Holbrook, 2006; Scoffoni et al., 2012; Sack et al., 2016). Indeed, some direct insights have challenged the major role for K_x vulnerability in driving K_{leaf} decline (Trifilô et al., 2016; Scoffoni et al., 2017a). In this study, we did not separate the contributions of K_x and K_{ox} to the decline in K_{leaf} during drought; however, Still et al. (2006) reported that the P_{sat} of K_x in rice is approximately 2.0 MPa, which is far lower than that of the K_{leaf} observed here (Table 1), indicating that the decrease in K_{leaf} in rice during drought might be more closely connected to K_{ox} vulnerability. Water movement outside the xylem is complex and dynamic, involving apoplastic, symplastic, and transmembrane liquid flow paths and vapor diffusion within the intercellular airspaces (Buckley, 2015; Buckley

Fig. 4. (A, B) Relationships between light-saturated photosynthetic rate (A_t) and stomatal conductance (g_s) or mesophyll conductance to CO2 (g_m). (C, D) Relationships between gas exchange based EFM estimation of leaf hydraulic conductance (K_{leaf}) and g_s or g_m. (This figure is available in colour at JXB online.)
Ktissues has been suggested to influence Kmembrane permeability of the bundle sheath and mesophyll. K has been suggested to be more related to decreases in slope of the vulnerability curve, before the turgor loss point, their shape and size caused by leaf shrinkage. Indeed, the initial, 2015; Buckley et al. 2015, 2014; Laur & Hacke, 2014; Cano et al., 2013), we observed that g_text_I in rice decreased with soil drought. Methodological problems exist in all currently available estimation techniques for g_text_I (Tholen et al., 2012; Gu & Sun, 2014). One of the challenges for measuring g_text_I under drought conditions (low g) is the accurate estimation of Ce, because of the increasing relative contribution of g_text_I to the overall leaf conductance, since the cuticular conductance for water is far greater than that for CO2. In this study, we carefully ruled out the effects of g_text_I on Ce. As it was not possible to estimate g_text_I under non-photorespiratory conditions using the variable J method, the effects of mitochondrial recycling of CO2 on g_text_I were not estimated here; however, the 3-fold decrease in g_text_I observed in this study is unlikely to have been caused by (photo)respiration alone. We therefore assume that the decrease in g_text_I values observed during drought was mostly due to the decline of g_text_I per se.

The causes of the decrease in g_text_I during leaf dehydration are largely unknown, although g_text_I has been confirmed to be tightly correlated with mesophyll structure, membrane permeability, and the function of enzymes in the cytoplasm and chloroplast stroma (Flexas et al., 2008; Evans et al., 2009; Xiong et al., 2015a; Xiong et al., 2017). The two most important structural traits related to g_text_I are the cell wall thickness and the area of the chloroplast surface facing the intercellular airspace per unit leaf area (S; Evans et al., 2009; Tosens et al., 2012; Tomàs et al., 2013; Tosens et al., 2016; Xiong et al., 2017). S is related to the mesophyll cells themselves, as well as to the shape of chloroplasts and the light-dependent arrangement of chloroplasts (Tholen et al., 2008). During leaf dehydration, the chloroplasts may move to reduce photodamage to the photosystems, and thus potentially change the values of S (Tholen et al., 2008). As for water transport outside the xylem, the decline of membrane permeability, mediated by aquaporins, is suggested to correspond with the decrease in g_text_I (Flexas et al., 2006b; Perez-Martin et al., 2014; Sade Fig. 5. Effects of leaf water potential (ψ_text_leaf) on (A) the distribution of the relative limits on photosynthesis caused by stomatal diffusion (I_s), mesophyll diffusion (I_m), and biochemistry (I_b), and (B) the overall ψ_text_leaf-dependent reduction in photosynthesis due to stomatal diffusion (LB), mesophyll diffusion (LM), and photosynthetic biochemistry (LB). (This figure is available in colour at JXB online.)

et al., 2015; Buckley et al., 2017). During leaf dehydration, cells may be less well connected to each other owing to changes in their shape and size caused by leaf shrinkage. Indeed, the initial slope of the vulnerability curve, before the turgor loss point, has been suggested to be more related to decreases in K_text_leaf than K_text_cell (Scoffoni et al., 2014; Hernandez-Santana et al., 2016). In this study, K_text_leaf decreased sharply before π_text_tlp, suggesting that K_text_leaf vulnerability played a major role in K_text_leaf decline. Moreover, the membrane permeability of the bundle sheath and mesophyll tissues has been suggested to influence K_text_leaf, and this effect may be related to the activities of aquaporins (Laur & Hacke, 2014; Sade et al., 2014b).

Currently, all methods for estimating K_text_leaf have limitations (both common and specific to each method) that require consideration when interpreting data (Flexas et al., 2013). As shown in Fig. 3, the K_text_leaf vulnerability curve of rice is method dependent, despite the similar values observed between genotypes for any given method. The K_text_leaf vulnerability curve produced using EFM has a similar shape to the one generated using RKM (see the equations in Fig. 3 and statistics in Supplementary Table S2); however, the EFM method shows a much higher maximum K_text_leaf (K_text_max; Table 1) value. Considering that the RKM measurement was performed in darkness, the difference may have been caused by light-dependent aquaporin activation (Cochard et al., 2007; Scoffoni et al., 2008). Indeed, we previously observed that rice K_text_leaf measured using EFM was strongly affected by light (Xiong et al., 2018). In addition, the shape of the K_text_leaf vulnerability curve generated using the gas exchange based EFM method clearly differed from those produced using the other two methods, especially at high ψ_text_leaf values (>−0.5 MPa). One possible reason for these high K_text_leaf values at high ψ_text_leaf could be the imprecise method used to measure ψ_text_stem. Although the leaves were wrapped and equilibrated overnight in this study, ψ_text_stem is technically challenging to measure precisely using pressure chambers in leaves that are close to full hydration.

Responses of g_text_text_I to short-term soil drought

As reported for many species (Grassi & Magnani, 2005; Flexas et al., 2006; Warren, 2008; Flexas et al., 2009; Galle et al., 2009; Cano et al., 2013), we observed that g_text_I in rice decreased with soil drought. Methodological problems exist in all currently available estimation techniques for g_text_I (Tholen et al., 2012; Gu & Sun, 2014). One of the challenges for measuring g_text_I under drought conditions (low g) is the accurate estimation of Ce, because of the increasing relative contribution of g_text_I to the overall leaf conductance, since the cuticular conductance for water is far greater than that for CO2. In this study, we carefully ruled out the effects of g_text_I on Ce. As it was not possible to estimate g_text_I under non-photorespiratory conditions using the variable J method, the effects of mitochondrial recycling of CO2 on g_text_I were not estimated here; however, the 3-fold decrease in g_text_I observed in this study is unlikely to have been caused by (photo)respiration alone. We therefore assume that the decrease in g_text_I values observed during drought was mostly due to the decline of g_text_I per se.

The causes of the decrease in g_text_I during leaf dehydration are largely unknown, although g_text_I has been confirmed to be tightly correlated with mesophyll structure, membrane permeability, and the function of enzymes in the cytoplasm and chloroplast stroma (Flexas et al., 2008; Evans et al., 2009; Xiong et al., 2015a; Xiong et al., 2017). The two most important structural traits related to g_text_I are the cell wall thickness and the area of the chloroplast surface facing the intercellular airspace per unit leaf area (S; Evans et al., 2009; Tosens et al., 2012; Tomàs et al., 2013; Tosens et al., 2016; Xiong et al., 2017). S is related to the mesophyll cells themselves, as well as to the shape of chloroplasts and the light-dependent arrangement of chloroplasts (Tholen et al., 2008). During leaf dehydration, the chloroplasts may move to reduce photodamage to the photosystems, and thus potentially change the values of S (Tholen et al., 2008). As for water transport outside the xylem, the decline of membrane permeability, mediated by aquaporins, is suggested to correspond with the decrease in g_text_I (Flexas et al., 2006b; Perez-Martin et al., 2014; Sade
The change in cell wall properties might be one of the reasons for the decline in g_m under drought, as water stress usually introduces changes in the bulk elastic modulus of the cell wall (Brodribb & Holbrook, 2003; Saito & Terashima, 2004; Guyot et al., 2012), involving alteration of its biochemical composition and/or thickness. In addition, as shown in this study and previously (Théroux-Rancourt et al., 2014; Théroux-Rancourt et al., 2015), the K_{leaf}, A, g_s, and g_m vulnerability curves are almost always described as containing large measurement noise and/or high variability. Although estimation biases are inherently associated with all of the currently available techniques used to estimate K_{leaf} and g_m, the large number of different leaves used to construct the curves may be responsible for the major sources of variability. Hence, developing new methods to construct vulnerability curves based on a single leaf is perhaps one way to reduce the estimation variability in the future.

K_{leaf} vulnerability as a potential trigger for decline in g_s and g_m

Correlations between A, g_s, g_m, and K_{leaf} have been widely observed in many species, in part because of the common pathways for CO$_2$ diffusion and water transport within leaves, as well as between the leaf and atmosphere (Flexas et al., 2013; Théroux-Rancourt et al., 2015; Xiong et al., 2015b; Xiong et al., 2018). To determine whether these traits truly influence each other, these correlations would need to be observed for plants grown in the same conditions and measured under variable environmental conditions. As shown in Fig. 4, rice grown in the same environment and exposed to short-term changes in soil water content displayed a positive correlation between K_{leaf} and both g_s and g_m. Positive correlations between g_s and K_{leaf} across short-term environmental changes have been observed in many species (Théroux-Rancourt et al., 2015; Gleason et al., 2017; Xiong et al., 2018); however, the positive correlation observed between g_m and K_{leaf} contradicts the findings of Loucos et al. (2017), who found no correlation between these traits in cotton ($Gossypium$ sp.) measured under different light intensities. Although different species were used, the reason for this discrepancy is unclear. However, our results do support previous observations in grapevine ($Vitis$ sp.) and poplar ($Populus$ sp.) subjected to short-term soil drought (Ferrio et al., 2012; Théroux-Rancourt et al., 2014).

Fig. 6. Responses of variables in the stomatal model to changes in leaf water potential (ψ_{leaf}). (A) n, a turgor-independent parameter representing the effects of hormonal signals on the sensitivity of guard cell osmotic pressure to leaf turgor. (B) a, the relative concentration of adenosine triphosphate. (C) π, leaf osmotic pressure. (D) The parameters normalized by their values at a ψ_{leaf} of 0 MPa. K, gas exchange based EFM estimation of K_{leaf}, as in Fig. 3C. (This figure is available in colour at JXB online.)
One of the novel findings of this study is the role of K_{leaf} vulnerability in triggering the decrease in g_{m} and g_{m}. In general, changes in A, g_{m}, and g_{m} in response to ψ_{leaf} were similar to the K_{leaf} vulnerability curves in rice; however, the P_{so} of K_{leaf} was higher than for g_{m} and g_{m} (Figs 2 and 3; Table 1). Our observations in rice disprove the previously proposed hypothesis, which suggested that stomata close early to reduce xylem tension and thus prevent plant hydraulic dysfunction (Cochard et al., 2004; Brodribb & Holbrook, 2006; Hochberg et al., 2017). As discussed above, K_{leaf} vulnerability might be largely determined by the non-xylem water movement pathways, and thus be influenced directly by the hydraulic effects that also trigger stomatal closure (Brodribb & Holbrook, 2003; Guyot et al., 2012). Indeed, a recent study showed that stomatal closure under drought is induced by hydraulic signals but maintained by ABA (Tombesi et al., 2015). Changes in hormone levels and/or leaf structural properties potentially decrease g_{ln}. Interestingly, accumulation of ABA during drought conditions has been reported to decrease g_{ln} significantly (Mizokami et al., 2015); moreover, a slight increase in the leaf ABA level is enough to decrease g_{ln} but decreases in g_{ln} require higher leaf levels of ABA (Mizokami et al., 2015). The observation that g_{ln} is more sensitive to drought than g_{ln} may relate to the accumulation of ABA in leaves.

Modification of leaf anatomy facilitates the acclimation of leaf physiology to long-term drought

The acclimation of leaf anatomy and physiology to long-term drought was found to be coordinated in rice (Fig. 1). The LA and LW of the two rice genotypes displayed coordinated acclimation to drought, with the decrease in LA largely resulting from the narrowing of the leaf. Interestingly, a previous study found that grass species with naturally narrow leaves have high physiological drought tolerance (Craine et al., 2012). The decrease in LW is also associated with an increase in leaf vein density, which could result from the declining LW and/or increasing vein numbers. For instance, a perfectly coordinated acclimation of vein density and LW would suggest that vein spacing is determined passively by differences in leaf expansion. In this study, the major vein ($\text{VLA}_{\text{major}}$) and minor vein densities ($\text{VLA}_{\text{minor}}$) increased to different degrees under drought, suggesting that the increased leaf vein density is regulated both passively and actively in rice (Fig. 1). Moreover, the genotype-dependent differences in leaf vein density changes under drought may underpin the different drought tolerances of the two genotypes studied. The acclimation of the physiological traits to long-term drought was genotype-dependent, providing further evidence that modification of leaf vein density facilitates the physiological acclimation to drought in rice. Higher leaf vein densities in drought-acclimated leaves have a higher hydraulic capacity, and thus assimilate higher quantities of carbon. Vein density is closely related to K_{leaf} because greater vein densities, especially of the minor veins, are associated with higher K_{m} and K_{c} values (Buckley et al., 2015). In the present study, the responses of g_{ln} and g_{m} were also genotype dependent, suggesting that the mesophyll and epidermal tissues are also responsive to physiological acclimation in rice. However, we could not evaluate the effects of drought-induced anatomical and physiological changes on drought tolerance capacity because we did not construct pressure–volume curves and K_{leaf} vulnerability curves after drought treatment. Future research should focus on the effects of anatomical and physiological changes on drought tolerance.

In conclusion, these results provide new evidence that K_{leaf} and gas exchange are coordinated under drought conditions. Photosynthesis under drought conditions is primarily limited by g_{m} and g_{m}, and the decreased g_{m} was mainly determined by the decline in K_{leaf} although it was also related to drought-induced hormonal signals. The decreased g_{ln} and K_{leaf} are likely related to the changes in leaf anatomy and membrane permeability caused by drought.

Supplementary data

Supplementary data are available at JXB online.

Table S1. List of mathematical parameters and their units of measurement.

Table S2. Two-sample Kolmogorov-Smirnov test results in comparing K_{leaf} vulnerability of two rice genotypes.

Table S3. Two-sample Kolmogorov-Smirnov test results comparing K_{leaf} vulnerability methods.

Fig. S1. Climate information during the experiment (2017).

Acknowledgements

The authors thank Mr Zhuang Xiong for plants preparing and Dr Tom Buckley for helpful discussion. This work was partly supported by the National Key Program of R&D of China (No. 2016YFD0300210), the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1247), and the earmarked fund for China Agriculture Research System (CARS-01-20). DX was awarded by China Postdoctoral Science Foundation (2017M620326).

Author contributions

DX planned and designed the research; XW and TD performed the experiments; DX, XW, and TD analyzed the data and wrote the manuscript; all authors revised the manuscript.

References

Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144, 1890–1898.

Coupling of gas exchange and hydraulics

